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1. Introduction

The quantisation of the ten-dimensional superstring using pure spinors as world-sheet
ghosts [l has overcome many difficulties encountered in the Green-Schwarz (GS) and
Ramond-Neveu-Schwarz (RNS) formalisms. Most notably, by maintaining manifest space-
time supersymmetry, the pure spinor formalism has yielded super-Poincaré covariant multi-
loop amplitudes, leading to new insights into perturbative finiteness of superstring the-
ory B -

Counting fermionic zero modes is a powerful technique in the computation of loop
amplitudes in the pure spinor formalism and has for example been used to show that
at least four external states are needed for a non-vanishing massless loop amplitude [g].
Furthermore, the structure of massless four-point amplitudes is relatively simple because all



fermionic worldsheet variables contribute only through their zero modes. In the expressions
derived for the one-loop [H] and two-loop [[] amplitudes, supersymmetry was kept manifest
by expressing the kinematic factors as integrals over pure spinor superspace [ involving
three pure spinors A and five fermionic superspace coordinates 6,

Kl—loop = <()‘A)(>"7mW)()‘7nW)‘7:m”> ’

mnpqr s (1.1)
K2—100p = <()"7 P )‘)()‘7 W)‘anquf7"5> )

where the pure spinor superspace integration is denoted by (...), and A, (z,0), W(z,0)
and Fpupn(z,0) are the superfields of ten-dimensional Yang-Mills theory.

The kinematic factors in ([[.1]) have been explicitly evaluated for Neveu-Schwarz states
at two loops [ff] and one loop [ff], and were found to match the amplitudes derived in
the RNS formalism [§]. This provided important consistency checks in establishing the
validity of the pure spinor amplitude prescriptions. (Related one-loop calculations had
been reported in [f].)

In this paper, it will be shown how to compute the kinematic factors in ([.1]) when
the superfields are allowed to contribute fermionic fields, as is relevant for the scattering
of fermionic closed string states as well as Ramond/Ramond bosons. It turns out that
the calculation of fermionic amplitudes presents no additional difficulties, making ([[.1)
a good practical starting point for the computation of four-point loop amplitudes in a
unified fashion. This practical aspect of the supersymmetric pure spinor amplitudes was
also emphasised in [[[(], where the tree-level amplitudes were used to construct the fermion
and Ramond/Ramond form contributions to the four-point effective action of the type II
theories.

This paper is organised as follows. In section 2, different methods to compute pure
spinor superspace integrals are explored. These methods are then applied to the explicit
evaluation of the kinematic factors of massless four-point amplitudes at the one-loop level
in section 3, and at the two-loop level in section 4. In both these sections, the bosonic calcu-
lations are briefly reviewed before separately considering the cases of two and four Ramond
states. Particular attention will be paid to the constraints imposed by simple exchange
symmetries. An appendix contains algorithms which were used to reduce intermediate

expressions encountered in the amplitude calculations to a canonical form.

2. Zero mode integration

The calculation of scattering amplitudes in the pure spinor formalism leads to integrals over
zero modes of the fermionic worldsheet variables A and 6. Both 6 and X\ are 16-component
Weyl spinors, the A are commuting and the 6 anticommuting, and A is subject to the pure
spinor constraint (Ay™\) = 0. The amplitude prescriptions [, ] require three zero modes
of A and five zero modes of # to be present, and a Lorentz covariant object

Toodids = (\oXINIGh ) — T(@0) 15155 2.1)
was constructed such that the Yang-Mills antighost vertex operator

V= (AY"0)(M"0)(MPO)(0¥mnpb) has (V)=1. (2.2)



In this section, different methods of computing such “pure superspace integrals” are ex-
plored. As an example, a typical correlator encountered in the two-loop calculations of
section 4 is considered:

F(kiyug) = E2RZ KK (™™ PN Ay g ) (07,°20) (0puz) (Bqus) (Bysua) ) (2.3)

Here, k' and u; are the momenta and spinor wavefunctions of the four external particles.

2.1 Symmetry considerations and tensorial formulae

One systematic approach to evaluate the zero mode integrals is to find expressions for all
tensors that can be formed from (R.1)). By Fierz transformations, one can always write the
product of two 6 spinors as (97[3]9), where 7[¥ denotes the antisymmetrised product of k
gamma matrices. Due to the pure spinor constraint, the only bilinear in A is ()\fy[5])\), and
it is thus sufficient to consider the three cases

(PN or T or 48130)(04716) (04710)) (2.4)
Lorentz invariance then implies that it must be possible to express these tensors as sums of
suitably symmetrised products of metric tensors, resulting in a parity-even expression, plus
a parity-odd part made up from terms which in addition contain an epsilon tensor. The
parity-even parts may be constructed [fi] starting from the most general ansatz compatible
with the symmetries of the correlator and then using spinor identities along with the
normalisation (R.J) to determine all coefficients in the ansatz. Duality properties of the
spinor bilinears can be used to determine the parity-odd part [[f]. An extensive (and almost
exhaustive) list of correlators is found in [[(I], including the (Ay!10) and (\yP9) cases of
the above list:

mn r ” - 4 mn T 1 mnpqr
(™™ X) Oy 0) (07790) (9770)) = — = <5mn53r + e mnpqr)

mn spq ( 5T sh rsl s ch
X [ Fg 051 (07 6y + 0,0y, — 6,6 )} (FahlLik] (2.5)

mnpqr stu j 24 mnpqr 1 mnpqr
<()\'Y PIA) (A ‘9)(‘9’Yfgh0)(97jkl‘9)> = T35 <5mn53r + N P mnpqr)

X [5;715?5525;(5;55 — gkoT

(2.6)

(Here, the brackets (fgh < jkl) denote symmetrisation under simultaneous interchange of

u

)] [fghl[iki)(fghjkl)

fgh with ijk, with weight one.) The remaining correlator with the ()\’y[5]6?) factor can be
derived in the same way, using an ansatz consisting of six parity-even structures. Taking
a trace between the two v factors and noting that

Nar (AP XY (Ay2bedeg) Y = —a( (Aymmpalb \) (Al Y

one finds a relation to (R.). This is sufficient to determine all coefficients in the ansatz,
and the result is

<(>\,ymnpqr)\)(>\,yabcd69)(H,Yfgha)(aryjkla)> — E <6mnpq7" + lemnpm" B >

SmmP o 5258 (0507 + 20§67 ) + Omy 05467 (8507 — 3675 2.7
X [abc 5 090 (—0R0] + 267 04) + Ogp 05401, (05,07 1 h)] (abede][fgh][jH(Fahes k1) (2.7)



One may find it surprising that the derivation of these tensorial expressions only made
use of properties of (pure) spinors, and of the normalisation condition (R.2). However, it
can be seen from representation theory that the correlator (P.1) is uniquely characterised,
up to normalisation, by its symmetry. To see this, note that [[[J] the spinor products A3
and 6° transform in

AeNIA)  Sym3 $T = [00003] @ [10001]

2.8
gl 9%l Alt° ST = [00030] @ [11010]. (28)

(Here, A and 6 are taken to be in the ST irrep of SO(1,9), with Dynkin label [00001].) The
tensor product of these contains only one copy of the trivial representation. This applies
to any spinors A, which means that the pure spinor property cannot be essential to the
derivation of the tensorial identities. The use of the pure spinor constraint merely allows
for simpler derivations of the same identities.

As an illustration of this approach, consider the correlator of eq. (B.3). Leaving the

momenta aside for the moment by setting F' = kgk?nkgkfﬁ’ , the task is to compute

F = (™9 XY Ay ) (67,20) () (Bqus) (7s14)) -

After applying two Fierz transformations,

F = (5 (0™ (a8)(62,0)(67)) (s
1
3!-16
1
* 2-51-16
1

X m(ummwsm) s

one obtains a combination of the fundamental correlators listed in (R.1), (2.6) and (R.7).
A reliable evaluation of the numerous index symmetrisations is made possible by the use of

_l’_

(™) (Ay©90) (07, °0) (09750) ) (11 eacyun)

(e 3 Oy 196) 67, 8) 6278 (137 g )

a computer algebra program. In doing these calculations with Mathematica, an essential
tool is the GAMMA package [1J], expanding the products of gamma matrices in a A1 basis.
The result consists of two parts, F' = F©®) + F)_ with

N 1 7 ;
FO) = %(uwmmw)(uﬂam) + %535;n(uﬂzu2)(u3%u4) +..
1 .
~Tagg (7" ) (usy ™ ipus) (92 terms) (2.9)
~ 1 . .
O = ™ () )

1 o o
—msamprilmie (u1y* " ug) (usy* "2 iigioUd) (34 terms) (2.10)

The epsilon tensors in the second part can be eliminated using the fact that the wu; are
chiral spinors: If all the indices on ’y[k}ui are contracted into an epsilon tensor, one uses

6i1~~~ik/jl---jk’7jlmjkryll = (_)Qk(k+1)k:' Wil...l'k/ 9 (211)



where 1 = %meio___igwio"'i9. More generally, if all but r indices of y¥lu; are contracted,

4
LAY (2.12)

e Dr 1] _ Sk(k
Preprivedea — () 2k +1)k!m [i1.ir Virg1.05]

Ciyiprgre- i)

The result of these manipulations is

_ 1 1 .
FO = ag (WY u2) (ugy us) — oos b (ury ™ ug) (usyiua) + -
9 o
+ m(u17“’2’3u2)(U37ampri1i2iSU4) (53 terms) (2.13)

(Note that while the epsilon terms in the basic correlator formulae were easily obtained from
the delta terms by using Poincaré duality, this cannot be done here in any obvious way.)
The last step in the evaluation of (R.J) is to contract with the momenta, F' = kgkfnk;’kfﬁ’,
and to simplify the expressions using the on-shell identities ), k; = 0, k:l2 =0, fu; =0. Tt
is shown in appendix [A.9 that there are only ten independent scalars, denoted by By ... By,
that can be formed from four momenta and the four spinors u; ... us. With respect to this

basis, the result is

1

FO = s (695515 (ur Fyu) (uskyua) + - + 23357 (ury"u) (ugyaua)) (7 terms)
1
= ———(695,775,0,—80, 356, 356, 0, 233, 233,0
48 - 10080( ’ ? ’ ’ » Yy s s )Bl...Bloa
1
FE = ———(-23,-7,0,-16,28,28,0,7,7,0
48 - 10080( ’ » ) 40, 20, Uy €y 1 )B1...Bl()7
1
F = 15055 (14,16,0.-2.8,8,0,5,5,0) 5, 510 » (2.14)

where s;; = k; - kj.

2.2 A spinorial formula

While the derivation of tensorial identities for correlators of the form (R.4) is relatively
straightforward and elegant, it may be a tedious task to transform the expressions encoun-
tered in amplitude calculations to match this pattern. As seen in the example calculated
above, this is particularly true if additional spinors are involved, making it necessary to ap-
ply Fierz transformations. It is therefore desirable to use a covariant correlator expression

with open spinor indices. Such an expression was given in [, f:

TPt = N () () (37 () | B
(37)[61...55]

where N is a normalisation constant and the brackets ()[] denote (anti-)symmetrisation
with weight one. (Note that the right hand side is automatically gamma-matrix traceless:

any gamma-trace

(V)ap x (™)1l () P10l Py 108 (y )0005] = — () [0102 (Y030 (42517 =

vanishes due to the double-trace identity (vyu0)*(6v%¢0) = 0, which follows from the
fact that the tensor product (Alt? ST) ® S~ does not contain a vector representation and



therefore the vector (7446)(67*°6) has to vanish for all spinors v, and can also be shown
by applying a Fierz transformation.) This prescription was originally motivated [} by the
fermionic expansion of the Yang-Mills antighost vertex operator V,

V = Togy s 6 \AIXNT% % 2.16
B7,01...05

with
Togysios = (7)o (V") 302 (V" )r8s (Ymnp)645) ()61 .5]

where T is related to T by a parity transformation, up to the overall constant N. (Seeing
that T is uniquely determined by its symmetries, any covariant expression will be pro-
portional to T, after symmetrisation of the spinor indices, and this is merely the simplest
choice.)

Equation (R.15) immediately yields an algorithm to convert any correlator into traces
of gamma matrices or, if additional spinors are involved, bilinears in those spinors. It
is, however, already very tiresome to determine the normalisation constant N by hand.
The main advantage of this approach is that it clearly lends itself to implementation on
a computer algebra system, which can easily carry out the spinor index symmetrisations,
simplify the gamma products (again using the GAMMA package), and compute the traces.
For example,

NV) = [ ()2 ()5 ()| (Yot (1) 352 (V)35 (V)51

(aBv)[01...05]

1
=~ Tr(vey™) Tr(vyy") Tr(7:") Tr(v*™*vpnm) + - - -

1
~ 80 Tr(V=Yprm VYY" VY"1 YF) (60 terms)

= 5160960 .

The correct normalisation is therefore obtained by setting N = 5160960.

Returning to the example correlator (R.3)), one finds that the calculation is by far
simpler than with the previous method. After carrying out the symmetrisations («f7)[d:],
one obtains

-1
NE = Tr (2 n Y™™ ) (us gy sua) (way "y puz) +

mnpq[r

1
— (U2 ¥ yqus3) (m%%ﬂabrﬁmW Vzvs]uz;) , (24 terms)

30

where elementary index re-sorting has reduced the number of terms from 60 to 24. Ex-
panding the gamma products leads to
476

NF = T P(ury™ug) (ugy uz) + - - - +

1—5(u17“i1i2i3i4u2)(U37mpri1i2i3i4U4) , (294 terms)
which, in contrast to (R.10]), contains no epsilon terms as there are not enough free indices
present. Note that this intermediate result contains terms with with u; paired with ug or uy4,
so it is not possible to directly compare to egs. (R.9) and (R.13). However, after contracting



with the momenta kgk,%bkgsz and decomposing the result in the basis By ... By, one again
obtains

1
= —10080 (14, 16, O, —2, 8, 8, 0, 5, 5, O)Bl ...Bio » (217)

in agreement with (R.14).

The algorithm just outlined will be the method of choice for all correlator calculations
in the later sections of this paper and can easily be applied to a wider range of problems.
The only limitation is that the larger the number of gamma matrices and open indices
of the correlator, the slower the computer evaluation will be. For example, the correlator
considered in eq. (5.2) of L],

757178717711711...m4n4 — <()\,yp,ymlm9)(A7q7m2n29)()\,YT,YWS”SQ)(ermrynypqrfym4n49)> (2.18)

2 MmN MINg...MmaN4 1 MNMINg...M4aN4
- = ~mang _ 2 2.1
& (e = , (219)

can still be verified with this method but this already requires substantial runtime.

2.3 Component-based approach

A third method to evaluate the zero mode integrals consists of choosing a gamma matrix
representation, expanding the integrand as a polynomial in spinor components, and then
applying (B.15) to the individual monomials. This procedure seems particularly appealing
if at some stage of the calculation one works with a matrix representation anyhow, in
order to reduce the results to a canonical form (e.g. as outlined in appendix [A]). An
efficient decomposition algorithm (of k*ujusuzuy scalars, say) only needs a few non-zero
momentum and spinor wavefunction components to distinguish all independent scalars, and
therefore k and u can be replaced by sparse vectors. Furthermore, a trivial observation
allows for a much quicker numeric evaluation of correlator components than a naive use
of (B.19): In view of (R.1d), one can equivalently compute the components of the parity-
transformed expression V = (Ay"0)(Ay"0)(AP0)(0¥mnpf), where A and 6 are spinors of
chirality opposite to that of \, #. In the representation given in appendix [B, V' coincides
with V[, 5 44, and

V =192 X909299162630%0° 4- - - - +- 480 \' A2N3010%0109130™5 + ... (100352 terms)

The monomials in the fermionic expansion of V' then correspond to the arguments of
non-zero correlators, and the coefficients of those monomials are, up to normalisation and
symmetry factors, the correlator values.

Unfortunately, it turns out that the complexity of typical correlators (e.g. the one
given in (R.J)) makes it difficult to carry out the expansion in fermionic components in
any straightforward way and limits this method to special applications. For example, the
coefficients in (R.1§) can be checked relatively easily by choosing particular index values,
such as

<(A’yp’ylza)(A7q7219)(A7r7349)(970707];(]7/7439)> _ <12 )\1)\1)\19199910911912 + ...

+12)\16)\16)\1605969798016>:%. (2.20)



(For fixed values of pgr, one gets no more than about 10° monomials of the form A\36°).
This approach may thus still be helpful in situations where the result has been narrowed
down to a simple ansatz.

3. One-loop amplitudes

The amplitude for the scattering of four massless states of the type IIB superstring was

computed [f] in the pure spinor formalism as

A= KK/ )P /d2z2/d2z3/d z4HG ziy zj) ik (3.1)

1<j

where G(z;,2;) is the scalar Green’s function, and the kinematic factor is given by the
product KK of left- and right-moving open superstring expressions,

Kioop = ((AALD) (MY W) (MY W3) Fymn) + (cycl(234)) . (3.2)

Here the indices 1... 4 label the external states and “- - -+ (cycl(234))” denotes the addition
of two other terms obtained by cyclic permutation of the indices 234. The spinor super-
field A, and its supercovariant derivatives, the vector gauge superfield A4,, = 87 oBp aAg
L(y™) P (DA — OmAp) and
Fom = %(’ymn)agDaWﬁ = 20|, Ap), describe ten-dimensional super-Yang-Mills theory.

as well as the spinor and vector field strengths W< =

The physical fields of this theory, a gauge boson and a gaugino, are found in the leading
components A,,| = ¢, and W = u® and correspond to the Neveu-Schwarz and Ramond
superstring states.

Choosing a gauge where 6% A, = 0, the on-shell identities

1
D(ozAﬁ) - ’Y&nﬁAma DaWﬁ = Z('Ymn)aﬁfmn

have been used to derive recursive relations [[[0, [[4, [[§] for the fermionic expansion

1 1 1
(n) _ m (n—1) (n) _ = (n—1) afn) _ _
Ay i (YM0) A, A - 0y W ), W 5

(Wmna)aamAglnfl) ’

where f(" = Lgon...921(D, - Dy, f)|- These recursion relations were explicitly solved
in [[[0], reducing the fermionic expansion to a simple repeated application of the derivative
operator O, = 3 (07,%0)9,:

1
ARP = W[Ok]mq@,
: 3.3
A(Qk—f—l) — ;[Ok] q(a,}/ u) ( )
m (2k +1)10 e

With this solution at hand, one has all ingredients to evaluate the kinematic factor (B.2)
for the three cases of zero, two, or four fermionic states.



3.1 Review: four bosons

The kinematic factor involving four bosons was considered in [ and this calculation will
now be reviewed briefly. First, note that the outcome is not fixed by symmetry: The result
must be gauge invariant [J] and therefore expressible in terms of the field strengths F} ... Fy.
The cyclic symmetrisation in (B.9) yields expressions symmetric in F, F3, Fy, and acting
on scalars constructed from the F; only, the (234) symmetrisation is equivalent to complete
symmetrisation in all labels (1234). Thus the result must be a linear combination of the
two gauge invariant symmetric F* scalars, namely the single trace Tr(F FoF3F)yy) and
double trace Tr(F( Fy) Tr(F3Fyy), leaving one relative coefficient to be determined.

Since all four states are of the same kind, one may first evaluate the correlator for one

labelling and then carry out the cyclic symmetrisation:

K} oty = (AN Wa) " W) Fignn) | gy + (eel (234))

1-loop —

The different ways to saturate 6° result in a sum of terms of the form

Xapop = <()\A§A))(A’YmWQ(B))(A’YnW3§C))f(D) > (3.4)

4,mn

with A+ B+C+ D =5 and A, B, C odd, D even:
{(AALD) (MY W) (MY W3) Famn )| 5 = X110 + X1310 + X1130 + X1112-

Note that X1130 + (cycl(234)) = X1310 + (cycl(234)), so only one of those two terms needs
to be computed. Using (B.J) for the superfield expansions, one obtains

Xsn0 = §3Fmn PR FeFA Xa110,  Xaiio = ((M114790) (2a1y726) (Aya6) (67°™"0)) ,

Xinz = kG ER PR Xz, Xine = ((W"0710) 0n/1y720) (1"6) (67."6))

X1310 = %ki o e O Ft4 X13107 X1310 = <()\’Y[t|’7ma9)()\’Y‘U]VTSG)()\’Yna)(a’Yapqe»-

nt pgtrsttu

The method outlined in section P.9 is readily applicable to these correlators. For example,
for X3111, the trace evaluation yields

i T
X310 = N7 [@ Tr(Ya7?) Tr(Yaga7™™™) Tr(v 0oy H) Tr(7¥ sy 4 - -

1
s Tr(w[“%s%yﬂqﬂt]w”"’wwywm"“vz)] (60 terms)

2 1 1 26
— (oo - s oo - OO+ o

5mn

315 P" 6?5)
[mn][pg][rs][tu](pgers)

Upon contracting with the field strengths, momenta and polarisations, and symmetrising
over the cyclic permutations (234) (with weight 3), one finds that all three contributions

are separately gauge invariant:

11 1
X110 + (cycl(234)) = — Tr(F FoF3Fyy) — — Tr(F(y Fy) Tr(F3Fyy)

112 56
19 31

X112 + (cycl(234)) = 18 Tr(F FaF3Fy) — 702 Tr(F(1 F2) Tr(F3Fy)
3

Xis10 + (CyC1(234)) = 5@ (4 TY(F(1F2F3F4)) — TI“(F(lFQ) TF(F3F4)))



The sum X3119 + X1112 has the right ratio of single- and double-trace terms to be propor-
tional to the well-known result tgF'4, and the last line exhibits the right ratio by itself. The
overall kinematic factor is therefore

3 1
Ko = o (ATx(Fy FaF3Fy)) — Te(F Fy) Tr(F3Fy)) = mtgFA‘, (3.5)
in agreement with the expressions derived in the RNS [if]] and Green-Schwarz [[[7] for-

malisms.

3.2 Four fermions

The four-fermion kinematic factor could be evaluated in the same way as in the four-boson
case by summing up all terms Xapcp, A+ B+ C + D = 5, now with A, B, C even
and D odd. Note however that this time, the outcome is fixed by symmetry: The cyclic
symmetrisation in (B.J) leads to a completely antisymmetric dependence on uz, us, u4.
Acting on scalars of the form k?ujuousuy, antisymmetrising over [234] is equivalent to
antisymmetrising over [1234], and there is only one completely antisymmetric k?ujusugug
scalar. Without further calculation, one can infer that the kinematic factor is proportional
to that scalar,

K{Noop = const - ((u1kzus) (ushyug) — (u1koyus) (uokyus) + (urfous) (ugkyus))
which of course agrees with the RNS amplitude (see e.g. [Iq], eq. (3.67)).

3.3 Two bosons, two fermions

In evaluating (B-J) for two bosons and two fermions, the cyclic symmetrisations affect
whether the W and F superfields contribute bosons or fermions. Only the label of the A,
superfield stays unaffected, and one has to choose whether it should contribute a boson
or a fermion. Since its fermionic expansion starts with the bosonic polarisation vector,
Aj o ~ ({10)q, the calculation can be simplified by choosing a labelling where particle 1 is
a fermion. (Of course, the final result must be independent of this choice.) The assignment
of the other three labels is then irrelevant and will be chosen as fifobsby. Writing out
the cyclic permutations, two of the three terms are essentially the same because they are
related by interchange of the labels 3 and 4. This interchange can be carried out after
computing the correlator, an operation which will be denoted by m34. The kinematic factor
is then

K%—%?(ﬁa (fl f2b3b4) = (1 — 7T34) < ()\Ageven) ) ()\’ymWQeven) ) ()\’Yn W?EOdd) )ffr\;errll) >
+<(>\A§even) ) ()\,ym W3(0dd) ) ()\,yn 4(Odd) )]:(odd) > .

2,mn

While one expects the final result to be symmetric under exchange of 3 and 4, this is only
the case for the second line of this expression (note that the exchange of the two Wedd)
factors gives a sign from interchange of odd numbers of #). The first line, on the other
hand, is manifestly antisymmetric and should therefore give zero. Even then, unlike in the

four-fermion calculation, the result is not fixed by symmetry. There are five independent

,10,



kFy Fyuzuy scalars (see appendix [A], eq. (A.6)), denoted by Cj...Cs, and there are two
independent combinations of these scalars with the required [12](34) symmetry.

Expanding the superfields and collecting terms with 6°, the first line yields a combi-
nation of terms X pcp with A, B, D odd and C even. There is only one #° combination
coming from the second line, which will be denoted by X%,,; = (—ma4)Xo111:

K2 = (1 — maa) (Xa010 + Xa210 + X030 + Xoo12) + Xby1; »

with the correlators

Xaow0 = —gokakaChniXaoo, Xaoro = (M *0)(07a"0) (01pu1) (M ™ uz) (Ay"146) )
Xono = 1k kG knGaXozio,  Xazio = (M *0)(0raur) A"1*0) (Breuz) ("7 °6) )
Xoozo = mkik3Ckit (2 Xo030,  Xaozo = <()\’Ya9)(9’Yau1)()\’y[muz)()\fy"}fybce)(nycd‘fa»
Xooiz = Sk Gk kA Xo012,  Xopi2 = <(>‘7a9)(9%Ul)(AW[mw)()\Wn}vbcH)(and69)>
Xélll = %k,‘:’ gkﬁgékgn)zénu Xélll = <()\’Ya9)(G’Yaul)()\’Y[m|’che)()\’Y‘n]’Ydee)(9’)’nu2)>

Evaluating these expressions as outlined in section P.3, the spinor wavefunctions u; present
no complication. The part with the correct symmetry also takes the simplest form: One

finds

1
(D" 0) (0741 ) (M7 0) (A" 70) (0ynus)) = —%(25%[01(%1%}%2) + 6L (uryeuy))
and therefore 1
! — _ b c] . de [d e] . be
Xo111 180 (5m(uﬂ Y uz) + Gy (w19 y U2)) .

The result for X010 is

Xao10 = | — %6%n(u170u2) - %6%q(u17nU2) + %5fﬁn(u17qu2) — —2520 6;n(u1’ybcnu2)

1 1
_ 55 cmn R 5b nd 2960 e .
(Ul')’ U2) + 1260 m(ul’y UQ) T 3360 (U1’Y UQ) [bc][mn]

For the evaluation of X22107 it is useful to consider the more general correlator

13
{(M0) (Ovaur) My ™1470) (Ay "y %0 (Oaus)) = [— m5g5f§n(U17cu2) +...
1 m beden _ 11 bedemnx
201600 (17 u2) o aang (1 uz) )] (27 terms)

R 1
i1i2i304, )

2) — mebcdemnzilmig(ulw

i1i2i3u2) )

1
+ mgbcdemnmzim(uw

This time, even using the method of section R.3, there are sufficiently many open indices
and long enough traces for epsilon tensors to appear. Using eqs. (B.11) and (R.19), they
can be re-written into v>7 terms:

13
{(AY"0) (07aur) (M ™170) (Ay™490) (0y4us)) = [—M6§62§n(uwcu2) + ...
1 1
5m beden L bedemnx 27 t
+Teg00 00 (Y ue)+e - — oaes (wy “2)} nlpeg 2 termms)
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A good check on the sign of the epsilon contributions is that X5, is recovered when
contracting with 7,,, involving a cancellation of all 7[5] terms. To obtain X2210, one
multiplies by —7cy:

) 29
X — 5de b 5bd e 5 n 5d ben
210 = | 7o Oinn (U177 2) F G O (w1 ) + 5eersdie’ (1Y ua) + Gren O (U™ us)
1 11 1
5b den 5b emn bdemn
+ogg0 0m (117" 2) + garerda(uay ™ uz) + e (Y ) el

For the calculation of Xop39 and X912, one may first evaluate a more general correlator
((AY*0) (07411 ) (M) (Ay™42¢0) (074?¢H)) and then contract with 7., and 7,,, respec-
tively. The results are

. 17
X = ——5 b _— 4 e 5 n _—5d ben
2030 |: 720 mn(ul’y u2)+288 mn(u17 u2) 1440 de ( ury u2) 10080 m(“fl'}’ u2)
23 1 1
— 0 (ury M ug) — =0 (ur Y ug) + —(ulvbdemnuﬂ] ;
10080 ™ 1440 6720 (mn][de]
X _ d bce

11 17 1
- b cde 5b cem _ bedem )
Toogo o (117 2) + Jagerda(uay™ ua) — gaer (uay ™ ug) el

After multiplication with the momenta and polarisations, all individual contributions are
gauge invariant and can be expanded in the basis C; ... C5 listed in ([A.§):

1

1-— X = —(-1,12,-12,1,2

( 7734) 4010 60480( ) ) ) )C1...C5
1

(1 = m34) Xoz10 = ren (31, -30,30, =1, =2)cy o5
1

1-— X = —(0,—-21,21

( 7734) 2030 60480 (0) ) 50,0)01...05

(1 — 34) Xoo15 = ——(—30,39, —39,0,0)

T34 2012 — 60480 P 5 y U, U)Cy..C5
1
X, = 1,0,4, —

As expected, the terms with the wrong [34] symmetry cancel:

(1 — m34) (Xa010 + Xa210 + X2030 + X2012) =0.

The remaining part can be written as

KP = Xy, = ~ 180 <813(u2¢3(%2 + Fg)dqur) + s23(uady (Fy + kg)ggul)) (3.6)

This again agrees with amplitude computed in the RNS result, see [Id] eq. (3.37).
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4. Two-loop amplitudes

The pure spinor formalism was used in [@, Q] to compute the two-loop type-I1IB amplitude
involving four massless states,

exp — > i ki -k Gz, 25)
A= /d2911d2912d2922n/d % détImQ) >K2—loop(ki7zi)a

where () is the genus-two period matrix, and the integration over fermionic zero modes is
encapsulated in

Kotoop = A12Ass{(MY"™PTN) (MY W) Fa,mn FspgFars) + (perm(1234))  (4.1)
= A1pAss Ko + A130804 K3 + A14A03 Ky . (4.2)

The kinematic factors K19, K13, K14 are accompanied by the basic antisymmetric biholo-
morphic 1-form A, which is related to a canonical basis w1, ws of holomorphic differentials
via Ay; = A2, 25) = wi(zi)wa(zj) — wa(zi)wi(zj). The superfields W and F; p,,, are the

(2
spinor and vector field strengths of the i-th external state, as in section B One encounters

superspace integrals of the form
Y(ade) = <(>‘7mnpqr>‘)()‘rVSWa)fb,mnfc,qud,rs> . (4'3)

The symmetries of the A3 combination [fl] in this correlator include the obvious symmetry
under mn < pgq, and also (A\yI™™47X)(Ay*)), = 0 (this holds for pure spinors A and can be
seen by dualising, and holds for unconstrained spinors A as part of a A36° scalar, as seen
from the representation content (2.§)), and allow one to shuffle the F factors:

Y (abed) =Y (achd) , Y (abed) + Y (acdb) + Y (adbe) = 0. (4.4)
This applies also after expanding the superfields in powers of 6: Using the notation

Yapcp(abed) = <()\,ymnpqr)\)()\,ysW£A))]_-(B) F(C )]:(D)> ,

bmn¥ ¢,pqY d,rs
one obtains the identities

Yapcp(abed) = (—)BCYACBD (achd)

(4.5)
YABCD(ade) = (—)BC+BD+1YACDB(aCdb) + (—)BD+CD+1YADBc(adbC) ,

where the signs arise from the exchange of fermions.

4.1 Review: four bosons

The case of four Neveu-Schwarz states was considered in [ff] and will be briefly reviewed
here. As all three kinematic factors K19, K13 and Kq4 are equivalent, it is sufficient to
consider K71 in detail. With all external states being identical, the symmetrisations of ([£.1])
can be carried out at the end of the calculation:

Ky = —4 (WnFyFisFa) |4B —4 <W[3f4}f[1f2]>‘4B
= (1 — 7T12)(1 — 7T34)(1 + 7T137T24) <W1f2f3f4>‘4B

,13,



Expanding the superfields, the Neveu-Schwarz states come from terms of the form Y pop =
Yapcop(1234) with A odd and B, C, D even. Using the shuffling identities ({.§) to simplify,
one obtains

(W1 FaF3Fu)|,m = Y5000+ Y1400+ Y1040+ Y1004 + Y3200 + Y3020 + Y3002 + Y1220 + Y1202+ Y1022

1
= (1 + ma3)(1 — m24) <§Y5000 + Y1400 + Y3200 + Y1022> ;
and therefore K{P can be written as the image of a symmetrisation operator Syp

1
Ky = Sip <§Y5000 + Y1400 + Y3200 + Y1022> ,
Sup = (1 —m2)(1 — m34) (1 + m137m24) (1 + m23) (1 — ma4) .

It is worth noting at this point that, on the sixteen-dimensional space of Lorentz scalars
built from the four field strengths F; and two momenta, the symmetriser S4g has rank four.
The correlators were computed in [f], using the method outlined in section R.1. Two are

zero, Yso00 = Y1400 = 0, and the remaining ones are
Y3000 = —@k o Fodbim F2rFpn Frg (AP0 X) (A y°0) (076°70) (07407 ))
Yioa2 = —6—F b FR ks FSlEL (™l X) Ay 1y20) (04°%0) (07,7 0)) .

In reducing those two contributions to a set of independent scalars, one finds that they
both are not just sums of (k- k)EF* terms but also contain terms of the form & - F terms.
The latter are projected out by the symmetriser Syg, and the result is

1
S4B(Ya200 + Yi022) = 120(813 — 593) (4 Tx(Fy FoF3Fyy) — Tx(F (1 Fy) Tr(F3Fy)) |
1
Kiy = 720(813 — sa3)taF*.

By trivial index exchange, one obtains K3 and K4, and the total is

1
K3op = ~70 ——((s13 — 523) A12A34 + (s12 — 523) A130a4 + (s12 — 513)A1403) tsF*, (4.6)

a product of the completely symmetric one-loop kinematic factor tgF* and a completely
symmetric combination of the momenta and the A;;.

4.2 Four fermions

The calculation involving four Ramond states is very similar to the bosonic one. Focussing
on the Kjy part, the symmetrisations in ([.]) can again be rewritten as action of sym-
metrisation operators on the correlator of superfields with one particular labelling:

K15 = (1= m2)(1 — m34) (1 + mismas) (W1 FoFsFy)
== 4(1 - 7T12) <W1f2f3f4>

‘4F

"
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The last step follows from the fact that all k*u? scalars (see appendix [A.2) are invariant
under w1374 and have w9 = w34. This time, on expanding the superfields, one collects the
terms Yapcp with A even and B, C, D odd. After using ([£4) to simplify,

(W1F2F3Fa)| ;o = Yor1 + Yosu1 + Yoisr + Yous

1
= (1 — ma3)(1 + 724) <§Y2111 + Y0311> ;
one obtains
1
Kg = Sur <§Y2111 + Y0311> ) Sap = 4(1 — m12)(1 — m23)(1 + 724) .

This symmetriser has rank three, and the result is again not determined by symmetry.
Two correlators have to be computed:

Yori1 = (—=2)kLk2 3k (O™ U N) Ay 1y ™0) (0ypur ) (0ynuz) (Bqus) (Bysua) )

2
Vasns = (= 5 JRERERSH (O™ ) 03T 09,786) @) B B

With four fermions present, the method of section P.2 is preferred as it does not involve re-
arranging the fermions using Fierz identities. The first correlator was covered as an example

in that section, and the second one can be evaluated in the same fashion. Expressed in the
basis listed in ([A.), the results are

1
Yo111 = M(—w, —21,21,19,-17,-17,0,0,0,0)B, .. By s

1
}/0311 — m(_145 _16, Oa 2) _8, _8, Oa _5’ _57 O)Bl ...B1g *

After acting with the symmetriser Syr, one obtains the same u* scalar encountered in the
one-loop amplitude,

1 1
Ki¥ = S4F<§Y2111 + Yo311> = E(_lyoa 1,0,-1,0,0,0,0,0)p, ..y

1

= 5512 ((wksuz) (uskyua) — (uikyus) (uakyua) + (urkyua) (uokyus)) -

The K13 and K4 parts again follow by index exchange, and the total result

1
Kb — - (512A12A34 — 513013024 + 514A14A23)

2-loop — 45
X ((U1%3U2)(u3%1u4) - (U1%2U3)(U2k1u4) + (u1JéQU4)(u2}é1U3)) (4.7)

is again a simple product of the one-loop kinematic factor and a combination of the A;;
and momenta. This time, both factors are completely antisymmetric.
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4.3 Two bosons, two fermions

As in the one-loop calculation of section B.3, in the mixed case one has to pay some attention
to the permutations in (f.1]) since they affect which superfields contribute fermionic fields.
The complete symmetrisation makes it irrelevant which labels are assigned to the two
K2B2F

fermions, and the convention f; fobsby will be used here. The kinematic factor is

K2B2F and K2B2F

then distinguished from the other two,
Some elementary symmetry considerations prevent the KZ52F ... K2B?F to have the
same simple form as in the other two cases, i.e. a linear functlon of the Mandelstam

invariants, times the one-loop kinematic factor:

K32+ Z AvjAp % [fi(s12, 513) Kih (f1f2b3bs)] -
j=1,23

For Ko, this is the case because the coefficient of A1aAs, in (@) is antisymmetric both
under 1 <~ 2 and 3 < 4. On the other hand, the one-loop kinematic factor K1 1oop(]‘“1]‘“2133,134)
has the symmetries [12] and (34), and any function f(s12, s13) has identical symmetry under

1 < 2 and 3 < 4. Similarly, in the case of K13, note that any f(si2, s13) is symmetric under
2B2F
1-loop

Carrying out the symmetrisations in ([.1]) and using the identities (f£4), one finds

the simultaneous interchange 1 «» 2 and 3 < 4, whereas K (f1f2bsby) is antisymmetric.

K3 = (1 —mp)(1 - ) K,
K2B2F =(2-14+mo+m34+ 27T127734)f(7
K22 — (14 2my9 + 2134 + miom30) K,
where, schematically,
o even odd even even odd even odd odd
K = ((Ww ) gt e o)) (Bw i) F e A m iy o 4s)

Considering the action of these symmetrisation operators on the ten-dimensional space of
k3ujus F3Fy scalars (see appendix [A.3), one finds that (1 — m12)(1 — 734) has rank one
with image spanned by s12 X (1,—2,2,0,0)¢,..cs, and both (21 + 719 + 734 + 2712734)
and (1 + 2w + 2734 + m2m34) have rank 2 with images spanned by (s12 and s13) X
(1,-2,2,0,0)¢, ..c,. Here,

(1, _2’ 2, 0’ O)Cl~~~c5 = (ul’yau2) (nglchIjlc beck1 + 2F, beckc)

is the unique (up to normalisation) scalar of the form k3ujusF3F); antisymmetric in both
[12] and [34]. The tensor structure is thus fixed by elementary symmetries to be
K32 = (c1512812034 + (2812 + c3513) A1z Aos + ((c3 — 02)812 + c3513) A1493)
x (v u2) (K3F2 Fy — 2F3, Fpokl + 2Fg F2kY)  (4.9)

where the ¢; are constants which could be determined by calculating the non-zero correla-

tors in (f.§).
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5. Discussion

In this paper, different methods were discussed to efficiently evaluate the superspace inte-
grals appearing in multiloop amplitudes derived in the pure spinor formalism. Extending
previous calculations [f], [] restricted to Neveu-Schwarz states, it was then shown how the
treatment of Ramond states poses no additional difficulties. It was seen that simple ex-
change symmetries completely determine the kinematic factor of the one-loop four-fermion
amplitude, and are sufficient to derive the two-boson/two-fermion two-loop kinematic fac-
tor starting from symmetry properties of the corresponding pure spinor integral.

While the bosonic calculations of [f, [ have, in conjunction with supersymmetry,
already established the equivalence of the massless four-point amplitudes derived in the
pure spinor and RNS formalisms, it would be interesting to make contact between the
results of sections .3 / .3 and two-loop amplitudes involving Ramond states as computed
in the RNS formalism (see for example [L])).

The assistance of a computer algebra system seems indispensible in explicitly evaluat-
ing pure spinor superspace integrals. To avoid excessive use of custom-made algorithms,
it would be desirable to implement these calculations in a wider computational framework
particular adapted to field theory calculations [LY].

The methods outlined in this paper should be easily applicable to future higher-loop
amplitude expressions derived from the pure spinor formalism, and, it is hoped, to other
superspace integrals.
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A. Reduction to kinematic bases

In calculating scattering amplitudes one encounters kinematic factors which are Lorentz
invariant polynomials in the momenta, polarisations and/or spinor wavefunctions of the
scattered particles. It can be a non-trivial task to simplify such expressions, taking into
account the on-shell identities ), k; = 0, k:f =0, k;-¢; =0, f,u; = 0, and, in the case of
fermions, re-arrangements stemming from Fierz identities.

More generally, one would like to know how many independent combinations of some
given fields (subject to on-shell identities) there are, and how to reduce an arbitrary expres-
sion with respect to some chosen basis. This appendix outlines methods to address these
problems, with an emphasis on algorithms which can easily be transferred to a computer
algebra system. These methods are not limited to dealing with pure spinor calculations
but the scope will be restricted to amplitudes of four massless vector or spinor particles in
ten dimensions.
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A.1 Four bosons

It is not difficult to reduce polynomials in the momenta and polarisations to a canonical
form. The momentum conservation constraint ) ,k; = 0 is solved by eliminating one
momentum (for example k), all k2 are set to zero, and one of the two remaining quadratic
combinations of momenta is eliminated (for example so3 — —s12 — 513, where s;; = k; - ky,).
Then all products k; - (; are set to zero, and one extra k - { product is replaced (when
eliminating k4, the replacement is k3 - {4 — (—k1 — k2) - (4). The remaining monomials are
then independent. (This is at least the case with the low powers of momenta encountered
in the calculations of sections [} and |, where there are enough spatial directions for all
momenta/polarisations to be linearly independent.)

The implementation of these reduction rules on a computer is straightforward. The
easiest way to obtain scalars which are also invariant under the gauge symmetry k; —
is to start with expressions constructed from the field strengths F% = le[ag“f ). For the
one-loop calculations of section B.1], the relevant basis consists of gauge invariant scalars
containing only the four field strengths F} ... Fy. One finds six independent combinations,

TF(F1F2F3F4) TI‘(FlFQ) TI‘(F3F4)
Tr(F1F2F4F3) TI“(Fng) TY(F2F4)
TF(F1F3F2F4) TI‘(F1F4) TI‘(FQFg)

In the two-loop calculations of section [L.], all monomials have two more momenta. There
are sixteen independent gauge invariant scalars of the form kkF}FyF3Fy, and twelve of
them may be constructed from the previous basis by multiplication with si2 and si3:
Ay = s19 Te(F1 Fo F3Fy), As = s13 Tr(Fy FoF3F)), etc. One choice for the additional four is

A13 = k‘3 . F1 . F2 . k‘3 TI‘(F3F4) A15 = k‘3 . F1 . F4 . k‘Q TI‘(FQF3)
A14 = k4 . F1 . Fg . kQ TY(F2F4) A16 = k4 . F2 . Fg . k4 TY(F1F4) .

As an example application of the computer algorithms, one may check that the symmetri-

sation operator of section [.1],

Sip = (1 —m2)(1 — m34)(1 + m137m24) (1 + 723) (1 — m24) ,
acts as

SigA1 = 8A; +4A9 —4As3 +4A4 + 8A5 + 1644

... 5 5 5
SigAig = —6A4A; +6A4A3 — 645 — 1244 + 5147 + 3Ag + §A9 + 3A10 + 51411 + 3419
and has rank four.

A.2 Four fermions

In dealing with the spinor wavefunctions u; one has to face two issues: Fierz identities, and
the Dirac equation. Fierz identities not only allow one to change the order of the spinors
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but also give rise to relations between different expressions in one spinor order. The Dirac
equation often simplifies terms with momenta contracted into (um["} u;) bilinears.

In this section it is shown how to construct bases for terms of the form (k? or k%) x
uiuougty. A significant simplification comes from noting that the Dirac equation allows
one to rewrite (ui’y["}uj) bilinears into terms with lower n if more than one momentum is
contracted into the v[™. A good first step is therefore to disregard the momenta temporarily
and find all independent scalars and two-index tensors built from ui,...,us. From the
SO(10) representation content,

(ST)®t =2.1+46 -0+ 3- 1+ (tensors with rank > 2),

one expects two scalars and nine 2-tensors. The scalars are easily found by considering, as

in [R],
T1(1234) = (u1y®ug)(uzYaus) ,
T3(1234) = (u17®us) (usyapetis) -

and similarly for the other two inequivalent orders of the four spinors. (Note there is no 75
because of self-duality of the ! .) From Fierz transformations, one learns that all 73 terms
can be reduced to T} by T5(1234) = —1277(1234) — 2477 (1324) and permutations, and the
identity (va)(s(7*)y)s = 0 implies that T7(1234) + T1(1324) + T1(1423) = 0, leaving for
example 77(1234) and 77(1324) as independent scalars.

Generalising this approach to two-index tensors, it turns out that it is sufficient to
start with

T11(1234) = (u1y™u2)(ugy " uy) ,

T51(1234) = (u1y*y"y"ug)(usVauis) ,

T33(1234) = (u1y**y™ug) (ugyapy ™ ua) ,
and permutations of the spinor labels. It would be very tiresome to systematically apply
a variety of Fierz transformations by hand and to find an independent set. Fortunately,
by choosing a gamma matrix representation (such as the one listed in appendix [B]) and

reducing all expressions to polynomials in the independent spinor components uil, . ,ulm,

this problem can be solved with computer help. As expected, one finds that the T;;(abcd)
span a nine-dimensional space, and a basis can be chosen as

T11(1234), Tyy (1324), Tyq (1423), T11 (3412), T11(2413), T11 (2314),
T31(1234), Typ (1324), T31 (2314) . (A.1)
A typical relation reducing the other Tj;(abcd) to this basis is
T31(3412) = 2711 (1234) — 274, (3412) + Ts1(1324) + T31(3412) + 2mnT1(1234) . (A.2)

Having solved the first step, it is now easy to include the two or four momenta, taking
the Dirac equation into account. Consider first the case of two momenta. Starting from
the two-tensors in ([A.1]), one gets the three independent scalars

(urfzuz)(uzkyug), (u1fqus)(uzkyug) (w1 foua)(uzfyus) .
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In addition, there are four products of the two independent scalars T7(1234) and 77(1324)
with the two independent momentum invariants sj2 and si3. By contracting ([A.2) with
momenta, one can show that

812T1(1324) — 813T1(1234)
= —(wikgu2)(uskiua) + (uikous) (uokyua) — (urkqua)(uskyus), (A.3)
and this relation can be used to eliminate s1277(1324). (It will become clear later that

there are no independent other relations like this one.) There are thus six independent
k2w - - - uy scalars:

(u1kguz)(uskiua) s19 T1(1234)
(U1KQU3)(UQ%1U4) S13 T1(1234) (A4)
(u1kous) (ufyus) 513 T1(1324)

Note that there is only one completely antisymmetric combination of those, given by the
right hand side of ([A.J). Similarly, in the case of four momenta, one finds ten independent
k*uq - - - uy scalars:

By = s12 (u1k3ua)(uskyus) By = s13 (u1k3uz)(usk us)

B3 = s12 (u1kqus3) (uakyus) By = s13 (u1fquz)(uzfyus)

By = s12 (u1kqua) (uakyus) B = s13 (u1kqua)(uakyus) (A.5)
By = 53, T1(1234) Bg = 519513 T1(1234)

Bg = 535 T1(1234) Byo = 535 T1(1324)

Working in a gamma matrix representation, it is again simple to construct a computer
algorithm which reduces any given k2uq -+ - ug or k*uy - - - ug scalar into polynomials of the
spinor and momentum components. The Dirac equation can then be solved by breaking
up the sixteen-component spinors u; into eight-dimensional chiral spinors «; and u, as in
eq. (BJ). One obtains polynomials in the momentum components k¢ and the independent
)1...8.

spinor components (u$

S However, a great disadvantage of this procedure is that it

breaks manifest Lorentz invariance. For example, one encounters expressions which contain
subsets of terms proportional to the square of a single momentum and are therefore equal
to zero, but it is difficult to recognise this with a simple algorithm. The easiest solution
is to choose several sets of particular vectors k; satisfying k:l2 = 0and ),k = 0 and
to evaluate all expressions on these vectors. (By choosing integer arithmetic, one easily
avoids issues of numerical accuracy.) Substituting these sets of momentum vectors in the
bases (A.4) and (JA.f) gives full rank six and ten respectively, showing they are indeed
linearly independent.

Equipped with a computer algorithm for these basis decompositions, one finds that
the symmetriser Syr of section [£.3,

Sap = 4(1 — m12)(1 — m23) (1 + m24)
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acts on the Bj ... By basis as

SypB1 = 8By +4B4y + 4By + 4Bg ,

SypBig = —8B; — 16B3 + 8B3 + 1684 — 8By — 16Bg + 8 B7 + 24Bg + 24Bg + 16Bi
and has rank three.

A.3 Two bosons, two fermions

The combined methods of the last two sections can easily be extended to the mixed case
of two bosons and two fermions. In the one-loop calculation of section B.3, one encounters
scalars of the form kujusF3Fy. A basis of such objects is given by

Cy = (uy ug)k) . Fp
= (u1y"u2)F, beckl
= (w1 u2) Fyy ik, (A.6)
= (Ul’Yab u2) abFéldkd

Cs = (u1y™ug) Fiy Frgh

There are two combinations antisymmetric in [12] and symmetric in (34):
—C1+4Cy + Cy and Cy+ Cs.

Finally, there are ten independent scalars of the form k3uyua F5Fy (relevant to the two-loop
calculation of section [£.J), and they can all be obtained by multiplication of Cj ... Cs with
the two momentum invariants sio and s13.

B. A gamma matrix representation

A convenient representation of the SO(1,9) gamma matrices is given by the 32 x 32 matrices
pa_ [ 0 (9
(Y)ap 0

(") =116 = (Y")ag ,
(") = <_018 108> = —(7")as

and (%)% = —(7%)ag, a = 1...8, is a real, symmetric 16 x 16 representation for the SO(8)

Clifford algebra,
of
o 0 o°
()™ = <(Ja)T 0) . a=1..8,

where
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as given in appendix 5.B of [2(). The matrices I'* satisfy the SO(1,9) Clifford algebra
relations,

{Faarb} :277ab1327 nab = (+_ __)7
and bilinears of chiral spinors (with, say, positive chirality) are constructed as
(ullr-ady) = (uylt-tly) = u (Y19) 05 (7%2)77 . () 507

This representation is particularly suitable for the calculations outlined in appendix [
because it allows a simple decomposition of SO(1,9) spinors into SO(8) spinors due to its
block structure:

1 0 0 O

ro...po— (e 0 ri..ps— |0 1800
0 —115) 0 0 1g O

0 0 0 —1g

Therefore, the Dirac equation for a chiral 16-component spinor u,

(VG)aﬁaaua = 07

can be solved by splitting u into two chiral eight-component spinors of SO(8),

u— <U> with S () _ <+> |
U U —u

One obtains the coupled equations

(30 + dg)u® — (o-)u =0
(Do — Bg)u’ — (a1 - d)u® = 0
(with eight-dimensional dot products). These can be solved for v® in terms of u®:
—1 1

U= ——(0-0)u’ = \/_2—k+(0 ck)uc, (B.1)

where ky = —i0; = 7%((90 + 09).
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